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Abstract: This paper presents the design of the adaptive control system of GG with GAR, 

consisting of a stabilization controller and an orientation controller; the concept of dynamic 

inversion is used. The equations of nonlinear dynamics of GG were obtained in Part 1 of this 

paper series.The stabilization controller (for the stabilization mode) consists of a 2nd order 

reference model, a linear dynamic compensator, of the P.D type, a linear state observer and a 

neural network. The neural network models the adaptive component of the control law, which has 

the role of compensating for the dynamic inversion error. The orientation controller is chosen as 

P.I. type. In stabilization mode, the system compensates for the effect of external disturbances 

induced by the rotations of the base (rocket), and in orientation mode, the system controls the 

rotation of the target coordinator TC so that the sighting line (TC axis) overlaps the guidance 

line. By numerical simulations, using the Matlab/Simulink model, the dynamic characteristics of 

GG are drawn for the stabilization mode and for the orientation mode. 

 

Keyords: stabilization, guidance, dynamic inversion, neural network 

 

1. INTRODUCTION 

 

The automatic control of the dynamics of gyroscopic systems for orientation and 

stabilization mono, bi and triaxial is addressed in many specialized works. In most of 

these, linearized dynamic models are used, with linear control laws, as for example, in the 

papers [1-7]. It is also worth mentioning the works in which the control laws used are 

nonlinear [8-18]. Nonlinear models and nonlinear control laws can be used for 

gyrosystems with GAR obtained by particularizing those deduced for DGMSCMG [19-

22]. 

In this article, adaptive control based on the concept of dynamic inversion and the use 

of neural networks is used [23-26]. The controllers used for the orientation mode are of 

the P.I. or P.I.D. type, while those for the stabilization mode have linear dynamic 

compensators, linear state observers and neural networks as components. The neural 

network models the adaptive component of the control law, having the role, through its 

effect, to compensate for the influence of the dynamic inversion error.  
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The design of the two controllers is done in Section 2. Section 3 presents the Matlab 

Simulink model and, with it, the GG characteristics for the stabilization mode and for the 

orientation mode are plotted. In Section 4, conclusions are formulated. 

 

2. DESIGN OF ADAPTIVE CONTROL SYSTEM OF GG WITH GAR 

 

The concept of dynamic inversion and a neural network [23,24] are used to model the 

adaptive component, which has the role of compensating for the dynamic inversion 

error 1 2[  ]T = . 

Choosing output variables 1 1 2 2,g gy y = = and input variables 1 yu i= and 2 xu i= , 

equations (22) (from Part 2 of this paper series) can be expressed as follows 

1 1 1 1 2 2 2 2 1 1 2 2
ˆ ˆˆ ˆˆ ˆ ˆ ˆ,  ;  ( , ),  ( , );r ry v v y v v v h v h = = + = = + = =y u y u  (1) 

1 and 2 (dynamic inversion errors) contain all the other terms in (22)-from Part 1 

of this paper series. 
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 the following results 

1 1 2 1 4 2 5 1 2 12
ˆ ˆˆ ( , ) ;r yv h m y m y m y y m i= = − − + −y u  (3) 

2 2 4 1 2 2 8
ˆ ˆˆ ( , ) ;r xv h n y n y n i= = − − +y u  (4) 

1 1 1 3 2 6 1 1 7 1 1 8 2 2 9 1 2 10 1 1 2 11 1 2 2 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ /ym y m y m y y m y y m y y m y y m y y y m y y y N b= − − + − − − − + +

 
(5) 

2

2 3 1 1 2 5 1 1 6 1 2 7 1 2 2 0
ˆ ˆ ˆ ˆ ˆ ˆ /xn y n y n y y n y y n y y y N a= − + − − +  (6) 

The variables
1ŷ and

2ŷ represent the estimates of the variables 1y and 2y , components 

of the output vector of the state observer. 

The previous equations can be expressed in vector form 

1 2 1 2 1 2
ˆ ˆ ˆ ˆ, [  ] , [  ] , [  ] , T T T= = y y = v v  =y v + y v   (7) 



SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE – AFASES 2025 

 

 

169 

121 2 4 5

1 2

82 42

ˆ ˆ 0( , )ˆˆ ˆ ˆ( , ) =
ˆ 00ˆ( , )

r

r

r

mh m m m
y y

nn nh

  −    
= − + +      

       

y u
v = h y u y u

y u
 (8) 

1 1 3 2 6 1 1 7 1 1 8 2 2 9 1 2 10 1 1 2 11 1 2 2 01

2
2 3 1 1 2 5 1 1 6 1 2 7 1 2 2 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ /

ˆ ˆ ˆ ˆ ˆ ˆ /

y

x

m y m y m y y m y y m y y m y y m y y y m y y y N b

n y n y n y y n y y n y y y N a





 − − + − − − − + + 
= =   

− + − − +    





 

(9) 

The inverse dynamics, obtained from (8), is described by the equation 

1
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In Fig. 1.a. the structure of the adaptive control system of the GG is given. Since the 

relative degrees of the components of the output vector are equal to 2 according to [25], a 

reference model of order 2 is chosen, having the transfer matrix 

2

0
22 2

0 0

( )
s 2 s

mH s I

 

=
+ +

 (11) 

The linear dynamic compensator of the stabilization subsystem and, respectively, the 

orientation controller are chosen as P.D and P.I types, with the transfer matrices 

2 2(s) s,  , ,gg p d p p d dH K K K k I K k I= + = =  (12) 

0
0 0 0 2 0 0 2(s) ,  , ,

s

i
o p p p i i

K
H K K k I K k I= + = =  (13) 

with 2I - unity matrix (22). 

The output of the linear dynamic compensator is 

2 2
ˆ + , [  ]=[  ]  pd p d c c p d p dK K = D D K K k I k I= =v y y e  (14) 

1 2 1 2 1 1 2 2 1 2 1 1 2 2[  ] [  ] ,  [  ] [( )( )] ,  [  ] [( )( )] ,T T T T T T T T T, y y y y y y y y= = = − = = − − = = − −e y y e e y y y y y y y y y

 
(15) 

Equation = +y v  with ˆ ˆ ˆ
pd a= + −v v y v (according to Fig.1.a) and ˆ

pdv  of the form (14), 

becomes 

ˆ  ( )p d aK K= − − + −y y y v   (16) 

equivalent to the system of equations of state 

1 2

2 1 2
ˆ( )p d aK K

=
= − − + −

e e

e e e v 
 (17) 

respectively with the equation of state of the linear subsystem with the input 

ˆ( )a −v  and the output y , 

ˆ= + ( )aA B −e e v   (18) 

in wich 
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The equation of state of the linear observer is [9] 

ˆˆ ˆ= + ( )A L −e e y y  (20) 

with L-amplification matrix (4×2) and ˆˆ,e y – vector estimates of ,e y  

1 1 2 2 2 (4 2)
ˆ ˆ ˆ= = , = , [  0 ]C C C I  = =y e e y e e  (21) 

With (20), equation (21) becomes 

ˆ ˆ= + ,  A L A A LC= −e e  (22) 

The amplification matrix L is chosen so that the matrix A has its eigen values 

located in the left complex half-plane (the matrix A is asymptotically stable). 

 The training vector of the neural network NNc is [23] 

ˆ= T PBe e  (23) 

with P – matrix (4×4), solution of the Lyapunov equation. 

+  TA P PA Q= −  (24) 

with Q – positive definite matrix (4×4). 

The adaptive command is calculated with the formula [25] 

ˆ ( ) T T

a W V =v  (25) 

W and V the NNc weights, solutions of the system of differential equations of the 

forms (27), and is the NNc driving vector, of the form (33) from [20],  is the derivative 

of the sigmoidal function ( ) ( );Tz V  =  

0 0
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 The inner (stabilizing) contour has the transfer matrix of the form 

22

1
(s)

s s +
s

d p

H I
k k

=
+

 (27) 

and the outer (orientation) contour has the transfer matrix 

0 0

23 2
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s
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s s + ( )s

p i

c
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k k
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+ + +
 (28) 

To calculate the coefficients 0ik and 0pk , the roots of the characteristic equation are 

required 
3 2

0 0s s +( )s 0d p p ik k k k+ + + =  (29) 

in the left complex half-plane. 

In order not to use sensors to measure angular velocities 1 1gy = and 2 2gy = , in the 

calculation relationship of inversion errors (9) their estimated values are used
1ŷ and 

2ŷ ,components of the estimated state vector 
2 1 2

ˆ ˆ ˆˆ [  ]Ty y= =e y . Thus, from (16), 
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2=  = −y e y y  (30) 

And and for the estimated vector ŷ the calculation relationship is 

2

ˆ ˆˆ=  = −y e y y  (31) 

From (31) it follows 

2 2 2 2

ˆ ˆ ˆ ˆ=   [0  ] _3I Mat− = − = −y y e y e y e  (32) 

with 2 2 2_ 3 [0  ].Mat I=  

 

3. NUMERICAL SIMULATIONS 

 

In Fig.2 the Matlab/Simulink model of the system in Fig.1 is presented. 

The following values were chosen: A=B=0.008 2N×m×s /rad , 2

1 0.02N×m×s /radA = , 
2

1 0.02N×m×s /radA = , 2

1 0.01N×m×s /radB = , 2

1 0.02N×m×s /radC = , 2 0.58A = N×m 

× 2s /rad, 2 0.02B = N×m× 2s /rad, 2 0.45C = N×m× 2s /rad, 0 0.02A = N×m× 2s /rad, 0B =

0.66= N×m× 2s /rad, 0 0.01D = N×m× 2s /rad, 2.5K = N×m× s , 0.1xF = N×m× s /rad,  

0.1yF = N×m× s /rad, 1 0.52 =  rad, 2 1 =  rad, 1 0.2t = rad/s, 2 0.15t = rad/s, 1t =  

0 rad/ 2s , 2t = 0 rad/ 2s ,
Tx = 0.15rad/ 2s ,

Tx = 0 rad/ 2s , 0.33X = rad/s, 0.05Y =  

rad/s, 0.05Z = rad /s, 1 2(0) (0) 0.05g g = = rad/s, 1 2(0) (0) 0g g = = rad/ 2s , xf =  

0.004 1rad− , 3a =0.32 s, yf = 0.004 1rad− , 1a = 0.08 s, 2a = 0.232 s, 0b = 0.264                     

s,     1b = 0.004s, 2b = 0.16s, c = 0.036s, 1c = 0.004s, 2c = 0.232s, 0d =0.04s, 0e = 0.004s,       

2r = 1

2cos 0.59sr  −= , 1

1 1 / 1.18st maximum maximumr r   −= = = , xk = 1N×m×A, 0.2yk =           

N×m×A, 26spk = .  

For NNc the following values were chosen: 

 1 4Q I= ( unit matrix), 

 0.1, 20,Sv Sw 0.01, 1wd k b= = = = = ,     , 

0 11 1 0 10 100 , 0W V = = , 1 9n = neurons, 2 10n = neurons, 3 2n = neurons, 

[1  0.9  0.8  0.7  0.6  0.5  0.4  0.3  0.2  0.1]ja = , 

With these values, the dynamic characteristics in Fig.3 were constructed.  
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FIG.1 Adaptive control system of nonlinear dynamics of GG: a) complete block diagram; b) block 

diagram of the linear subsystem 
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FIG.2  Matlab/Simulink model of the system in Fig.1 
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a. 

 

 
b. 

FIG.3  Dynamic characteristics of the subsystems in Fig.2: a – for the stabilization  mode; b – for the 

orientation mode 

 

4. CONCLUSIONS  

 

The nonlinear dynamics equations of the GG derived in Part 1 of this paper series are 

expressed in the form (7), with (8) and (9), and the inverse dynamics in the form (11). 

Using these, the system in Fig.1 was designed for the stabilization mode and for the 

orientation mode. The Matlab/Simulink model in Fig.2 was built and, with these, the 

dynamic characteristics in Fig.3 were plotted for the two operating modes. 

For the stabilization mode [0 0] deg/sT

c c= =y y , and disturbances ( ) and ( )x yN t N t  

(functions of the angular velocities of the base), are non-zero values; In orientation 

mode 1 2 2[  cos ]T

c t t  =y and [0 0] deg/sT

c =y , and = 0x yN N = . 

Analyzing the dynamic characteristics of the GG in Fig.3.a and b, the following 

conclusions result.  
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Compared to linear GG, with linear control, the nonlinear ones with adaptive control 

based on the use of the dynamic inversion method and neural networks contain very fast 

dynamic regimes (under 2 seconds), with very small overshoots and stationary errors in the 

two regimes practically zero. Adaptive control vector quickly compensates for dynamic 

inversion error ( [0 0] )T

a − →v  in both modes (stabilization and orientation), so that GG 

with nonlinear dynamics behaves very close to 2nd order linear systems. 

The dynamic characteristics in Fig.3.a confirm the following: 

( [0 0] , ( [0 0] )T T→ → → →y y y y y y and [0 0] ( [0 0] ),T T= → = →y v y y ˆ ˆ
pi s+ =v v  

 ˆ ˆ [0 0]T

pi pd= + →v v , and ˆ [0 0]T

a − =v  .  

So, the output y  of the subsystem with the input  ( )a −v  and its derivatives tend to 

[0 0]T with the input [0 0]T ; thus ê and [0 0]T→e . 

Similarly, we can say about the characteristics in Fig.3.b, with the difference 

that [0 0]T→ and c=→− −y y y . 
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